@config
@dataclass(config=ConfigDict(arbitrary_types_allowed=True))
class VllmConfig:
"""Dataclass which contains all vllm-related configuration. This
simplifies passing around the distinct configurations in the codebase.
"""
# TODO: use default_factory once default constructing ModelConfig doesn't
# try to download a model
model_config: ModelConfig = Field(default=None)
"""Model configuration."""
cache_config: CacheConfig = Field(default_factory=CacheConfig)
"""Cache configuration."""
parallel_config: ParallelConfig = Field(default_factory=ParallelConfig)
"""Parallel configuration."""
scheduler_config: SchedulerConfig = Field(default_factory=SchedulerConfig)
"""Scheduler configuration."""
device_config: DeviceConfig = Field(default_factory=DeviceConfig)
"""Device configuration."""
load_config: LoadConfig = Field(default_factory=LoadConfig)
"""Load configuration."""
lora_config: LoRAConfig | None = None
"""LoRA configuration."""
speculative_config: SpeculativeConfig | None = None
"""Speculative decoding configuration."""
structured_outputs_config: StructuredOutputsConfig = Field(
default_factory=StructuredOutputsConfig
)
"""Structured outputs configuration."""
observability_config: ObservabilityConfig | None = None
"""Observability configuration."""
quant_config: QuantizationConfig | None = None
"""Quantization configuration."""
compilation_config: CompilationConfig = Field(default_factory=CompilationConfig)
"""`torch.compile` and cudagraph capture configuration for the model.
As a shorthand, one can append compilation arguments via
-0.parameter=arguement such as `-O.mode=3` (same as `-O='{"mode":3}'`).
You can specify the full compilation config like so:
`{"mode": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}`
"""
kv_transfer_config: KVTransferConfig | None = None
"""The configurations for distributed KV cache transfer."""
kv_events_config: KVEventsConfig | None = None
"""The configurations for event publishing."""
# some opaque config, only used to provide additional information
# for the hash computation, mainly used for testing, debugging or out of
# tree config registration.
additional_config: dict | SupportsHash = Field(default_factory=dict)
"""Additional config for specified platform. Different platforms may
support different configs. Make sure the configs are valid for the platform
you are using. Contents must be hashable."""
instance_id: str = ""
"""The ID of the vLLM instance."""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
factors: list[Any] = []
# summarize vllm config
vllm_factors: list[Any] = []
from vllm import __version__
vllm_factors.append(__version__)
vllm_factors.append(envs.VLLM_USE_V1)
if self.model_config:
vllm_factors.append(self.model_config.compute_hash())
else:
vllm_factors.append("None")
if self.cache_config:
vllm_factors.append(self.cache_config.compute_hash())
else:
vllm_factors.append("None")
if self.parallel_config:
vllm_factors.append(self.parallel_config.compute_hash())
else:
vllm_factors.append("None")
if self.scheduler_config:
vllm_factors.append(self.scheduler_config.compute_hash())
else:
vllm_factors.append("None")
if self.device_config:
vllm_factors.append(self.device_config.compute_hash())
else:
vllm_factors.append("None")
if self.load_config:
vllm_factors.append(self.load_config.compute_hash())
else:
vllm_factors.append("None")
if self.lora_config:
vllm_factors.append(self.lora_config.compute_hash())
# LoRA creates static buffers based on max_num_batched_tokens.
# The tensor sizes and strides get captured in the torch.compile
# graph explicitly.
vllm_factors.append(str(self.scheduler_config.max_num_batched_tokens))
else:
vllm_factors.append("None")
if self.speculative_config:
vllm_factors.append(self.speculative_config.compute_hash())
else:
vllm_factors.append("None")
if self.structured_outputs_config:
vllm_factors.append(self.structured_outputs_config.compute_hash())
else:
vllm_factors.append("None")
if self.observability_config:
vllm_factors.append(self.observability_config.compute_hash())
else:
vllm_factors.append("None")
if self.quant_config:
pass # should be captured by model_config.quantization
if self.compilation_config:
vllm_factors.append(self.compilation_config.compute_hash())
else:
vllm_factors.append("None")
if self.kv_transfer_config:
vllm_factors.append(self.kv_transfer_config.compute_hash())
else:
vllm_factors.append("None")
if self.additional_config:
if isinstance(additional_config := self.additional_config, dict):
additional_config_hash = hashlib.md5(
json.dumps(additional_config, sort_keys=True).encode(),
usedforsecurity=False,
).hexdigest()
else:
additional_config_hash = additional_config.compute_hash()
vllm_factors.append(additional_config_hash)
else:
vllm_factors.append("None")
factors.append(vllm_factors)
hash_str = hashlib.md5(
str(factors).encode(), usedforsecurity=False
).hexdigest()[:10]
return hash_str
def pad_for_cudagraph(self, batch_size: int) -> int:
# if batch_size > self.compilation_config.max_cudagraph_capture_size,
# it should raise an IndexError.
# the caller should make sure the batch_size is within the range,
# i.e., batch_size <= self.compilation_config.max_cudagraph_capture_size
return self.compilation_config.bs_to_padded_graph_size[batch_size]
@staticmethod
def _get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> QuantizationConfig | None:
"""Get the quantization config."""
from vllm.platforms import current_platform
if model_config.quantization is not None:
from vllm.model_executor.model_loader.weight_utils import get_quant_config
quant_config = get_quant_config(model_config, load_config)
capability_tuple = current_platform.get_device_capability()
if capability_tuple is not None:
capability = capability_tuple.to_int()
if capability < quant_config.get_min_capability():
raise ValueError(
f"The quantization method {model_config.quantization} "
"is not supported for the current GPU. Minimum "
f"capability: {quant_config.get_min_capability()}. "
f"Current capability: {capability}."
)
supported_dtypes = quant_config.get_supported_act_dtypes()
if model_config.dtype not in supported_dtypes:
raise ValueError(
f"{model_config.dtype} is not supported for quantization "
f"method {model_config.quantization}. Supported dtypes: "
f"{supported_dtypes}"
)
quant_config.maybe_update_config(model_config.model)
return quant_config
return None
@staticmethod
def get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> QuantizationConfig | None:
import copy
# For some reason, the _ version of this modifies the model_config
# object, so using deepcopy to avoid this problem.
return VllmConfig._get_quantization_config(
copy.deepcopy(model_config), load_config
)
def with_hf_config(
self,
hf_config: PretrainedConfig,
architectures: list[str] | None = None,
) -> "VllmConfig":
if architectures is not None:
hf_config = copy.deepcopy(hf_config)
hf_config.architectures = architectures
model_config = copy.deepcopy(self.model_config)
model_config.hf_config = hf_config
return replace(self, model_config=model_config)
def __post_init__(self):
"""Verify configs are valid & consistent with each other."""
# To give each torch profile run a unique instance name.
self.instance_id = f"{time.time_ns()}"
self.try_verify_and_update_config()
if self.model_config is not None:
self.model_config.verify_with_parallel_config(self.parallel_config)
self.model_config.verify_dual_chunk_attention_config(self.load_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
if self.lora_config is not None:
self.lora_config.verify_with_cache_config(self.cache_config)
self.lora_config.verify_with_model_config(self.model_config)
if self.quant_config is None and self.model_config is not None:
self.quant_config = VllmConfig._get_quantization_config(
self.model_config, self.load_config
)
from vllm.platforms import current_platform
if (
self.model_config is not None
and self.scheduler_config.chunked_prefill_enabled
and self.model_config.dtype == torch.float32
and current_platform.get_device_capability() == (7, 5)
):
logger.warning_once(
"Turing devices tensor cores do not support float32 matmul. "
"To workaround this limitation, vLLM will set 'ieee' input "
"precision for chunked prefill triton kernels."
)
# If the user does not explicitly set a compilation mode, then
# we use the default mode. The default mode depends on other
# settings (see the below code).
if self.compilation_config.mode is None:
if envs.VLLM_USE_V1:
if (
self.model_config is not None
and not self.model_config.enforce_eager
):
self.compilation_config.mode = CompilationMode.VLLM_COMPILE
else:
self.compilation_config.mode = CompilationMode.NONE
else:
# NB: Passing both --enforce-eager and a compilation mode
# in V0 means the compilation mode wins out.
self.compilation_config.mode = CompilationMode.NONE
else:
assert self.compilation_config.mode >= CompilationMode.NONE
assert self.compilation_config.mode <= CompilationMode.VLLM_COMPILE
# If user does not set custom ops via none or all set it here based on
# compilation mode and backend.
if all(s not in self.compilation_config.custom_ops for s in ("all", "none")):
if (
self.compilation_config.backend == "inductor"
and self.compilation_config.mode > CompilationMode.NONE
):
self.compilation_config.custom_ops.append("none")
else:
self.compilation_config.custom_ops.append("all")
# async tp is built on top of sequence parallelism
# and requires it to be enabled.
if self.compilation_config.pass_config.enable_async_tp:
self.compilation_config.pass_config.enable_sequence_parallelism = True
if self.compilation_config.pass_config.enable_sequence_parallelism:
self.compilation_config.custom_ops.append("+rms_norm")
if current_platform.support_static_graph_mode():
# if cudagraph_mode is not explicitly set by users, set default
# value
if self.compilation_config.cudagraph_mode is None:
if (
envs.VLLM_USE_V1
and self.compilation_config.mode == CompilationMode.VLLM_COMPILE
):
# default to full and piecewise for most models
self.compilation_config.cudagraph_mode = (
CUDAGraphMode.FULL_AND_PIECEWISE
)
else:
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
# if cudagraph_mode has full cudagraphs, we need to check support
if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
# decode context parallel does not support full cudagraphs
if self.parallel_config.decode_context_parallel_size > 1:
logger.warning_once(
"Decode context parallel (DCP) is enabled, which is "
"incompatible with full CUDA graphs. "
"Overriding cudagraph_mode to PIECEWISE."
)
self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
elif self.model_config is not None:
if self.model_config.pooler_config is not None:
logger.warning_once(
"Pooling models do not support full cudagraphs. "
"Overriding cudagraph_mode to PIECEWISE."
)
self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
elif self.model_config.is_encoder_decoder:
logger.warning_once(
"Encoder-decoder models do not support full cudagraphs. "
"Overriding cudagraph_mode to PIECEWISE."
)
self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
elif (
current_platform.is_cuda()
and current_platform.is_device_capability(100)
and self.model_config.max_model_len > 131072
and not self.model_config.use_mla
):
# Refer to vllm/utils/flashinfer.py::use_trtllm_attention()
logger.warning_once(
"NVIDIA Blackwell TRTLLM attention cannot support "
"max_model_len >= 131072 (found "
f"{self.model_config.max_model_len}), causing dynamic "
"dispatching that breaks full cudagraphs. "
"Overriding cudagraph_mode to PIECEWISE."
)
self.compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
# disable cudagraph when enforce eager execution
if self.model_config is not None and self.model_config.enforce_eager:
logger.info("Cudagraph is disabled under eager mode")
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
# override related settings when enforce eager
self.compilation_config.max_cudagraph_capture_size = 0
self.compilation_config.cudagraph_capture_sizes = []
elif envs.VLLM_USE_V1:
self.compilation_config.cudagraph_num_of_warmups = 1
self._set_cudagraph_sizes()
else:
self.compilation_config.cudagraph_mode = CUDAGraphMode.NONE
if self.cache_config.kv_sharing_fast_prefill:
if (
self.speculative_config is not None
and self.speculative_config.use_eagle()
):
raise NotImplementedError(
"Fast prefill optimization for KV sharing is not "
"compatible with EAGLE as EAGLE requires correct logits "
"for all tokens while fast prefill gives incorrect logits "
"for prompt tokens."
)
logger.warning_once(
"--kv-sharing-fast-prefill requires changes on model side for "
"correctness and to realize prefill savings. "
)
disable_chunked_prefill_reasons: list[str] = []
if self.model_config:
if self.model_config.pooler_config:
pooling_type = self.model_config.pooler_config.pooling_type
if pooling_type is None or pooling_type.lower() != "last":
disable_chunked_prefill_reasons.append(
'Only "last" pooling supports chunked '
"prefill and prefix caching; disabling both."
)
if not getattr(self.model_config.hf_config, "is_causal", True):
disable_chunked_prefill_reasons.append(
"Only models using causal attention supports chunked "
"prefill and prefix caching; disabling both."
)
elif self.model_config.is_encoder_decoder:
from vllm.multimodal import MULTIMODAL_REGISTRY
self.scheduler_config.max_num_encoder_input_tokens = (
MULTIMODAL_REGISTRY.get_encdec_max_encoder_len(self.model_config)
)
logger.debug(
"Encoder-decoder model detected: setting "
"`max_num_encoder_input_tokens` to encoder length (%s)",
self.scheduler_config.max_num_encoder_input_tokens,
)
if (
self.model_config.architecture == "WhisperForConditionalGeneration"
and os.environ.get("VLLM_WORKER_MULTIPROC_METHOD") != "spawn"
):
logger.warning(
"Whisper is known to have issues with "
"forked workers. If startup is hanging, "
"try setting 'VLLM_WORKER_MULTIPROC_METHOD' "
"to 'spawn'."
)
# Final off-switch for CP/APC:
# Disable for (a) collected blockers, (b) encoder–decoder, or
# (c) explicit CP=False when APC wasn't requested.
# Do NOT disable merely because the resolved CP flag is False.
apc_requested = (
self.cache_config is not None and self.cache_config.enable_prefix_caching
)
if (
disable_chunked_prefill_reasons
or (self.model_config is not None and self.model_config.is_encoder_decoder)
or (
self.scheduler_config.enable_chunked_prefill is False
and not apc_requested
)
):
for reason in disable_chunked_prefill_reasons:
logger.info(reason)
self.scheduler_config.chunked_prefill_enabled = False
self.scheduler_config.long_prefill_token_threshold = 0
if self.cache_config is not None:
self.cache_config.enable_prefix_caching = False
if (
self.kv_events_config is not None
and self.kv_events_config.enable_kv_cache_events
and not self.cache_config.enable_prefix_caching
):
logger.warning(
"KV cache events are on, but prefix caching is not enabled."
"Use --enable-prefix-caching to enable."
)
if (
self.kv_events_config is not None
and self.kv_events_config.publisher != "null"
and not self.kv_events_config.enable_kv_cache_events
):
logger.warning(
"KV cache events are disabled,"
"but the scheduler is configured to publish them."
"Modify KVEventsConfig.enable_kv_cache_events"
"to True to enable."
)
current_platform.check_and_update_config(self)
# Do this after all the updates to compilation_config.mode
if (
envs.VLLM_USE_V1
and self.compilation_config.mode == CompilationMode.VLLM_COMPILE
):
self.compilation_config.set_splitting_ops_for_v1()
# final check of cudagraph mode after all possible updates
if envs.VLLM_USE_V1 and current_platform.is_cuda_alike():
if (
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
and self.model_config is not None
and not self.model_config.disable_cascade_attn
and not self.compilation_config.cudagraph_mode.has_piecewise_cudagraphs() # noqa: E501
):
logger.warning_once(
"No piecewise cudagraph for executing cascade attention."
" Will fall back to eager execution if a batch runs "
"into cascade attentions"
)
if self.compilation_config.cudagraph_mode.requires_piecewise_compilation():
assert self.compilation_config.mode == CompilationMode.VLLM_COMPILE, (
"Compilation mode should be CompilationMode.VLLM_COMPILE "
"when cudagraph_mode piecewise cudagraphs is used, "
f"cudagraph_mode={self.compilation_config.cudagraph_mode}"
)
# final migrate the deprecated flags
self.compilation_config.use_cudagraph = (
self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
)
self.compilation_config.full_cuda_graph = (
self.compilation_config.cudagraph_mode.has_full_cudagraphs()
)
if self.parallel_config.enable_dbo:
a2a_backend = self.parallel_config.all2all_backend
assert a2a_backend in ["deepep_low_latency", "deepep_high_throughput"], (
"Microbatching currently only supports the deepep_low_latency and "
f"deepep_high_throughput all2all backend. {a2a_backend} is not "
"supported. To fix use --all2all-backend=deepep_low_latency or "
"--all2all-backend=deepep_high_throughput and install the DeepEP"
" kernels."
)
if not self.model_config.disable_cascade_attn:
self.model_config.disable_cascade_attn = True
logger.warning_once("Disabling cascade attention when DBO is enabled.")
if not self.instance_id:
self.instance_id = random_uuid()[:5]
if (
envs.VLLM_USE_V1
and not self.scheduler_config.disable_hybrid_kv_cache_manager
):
# logger should only print warning message for hybrid models. As we
# can't know whether the model is hybrid or not now, so we don't log
# warning message here and will log it later.
if not current_platform.support_hybrid_kv_cache():
# Hybrid KV cache manager is not supported on non-GPU platforms.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
if self.kv_events_config is not None:
# Hybrid KV cache manager is not compatible with KV events.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
if (
self.model_config is not None
and self.model_config.attention_chunk_size is not None
):
if (
self.speculative_config is not None
and self.speculative_config.use_eagle()
):
# Hybrid KV cache manager is not yet supported with chunked
# local attention + eagle.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
elif not envs.VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE:
logger.warning(
"There is a latency regression when using chunked local"
" attention with the hybrid KV cache manager. Disabling"
" it, by default. To enable it, set the environment "
"VLLM_ALLOW_CHUNKED_LOCAL_ATTN_WITH_HYBRID_KV_CACHE=1."
)
# Hybrid KV cache manager is not yet supported with chunked
# local attention.
self.scheduler_config.disable_hybrid_kv_cache_manager = True
if self.compilation_config.debug_dump_path:
self.compilation_config.debug_dump_path = (
self.compilation_config.debug_dump_path.absolute().expanduser()
)
if envs.VLLM_DEBUG_DUMP_PATH is not None:
env_path = Path(envs.VLLM_DEBUG_DUMP_PATH).absolute().expanduser()
if self.compilation_config.debug_dump_path:
logger.warning(
"Config-specified debug dump path is overridden"
" by VLLM_DEBUG_DUMP_PATH to %s",
env_path,
)
self.compilation_config.debug_dump_path = env_path
def has_blocked_weights():
if self.quant_config is not None:
if hasattr(self.quant_config, "weight_block_size"):
return self.quant_config.weight_block_size is not None
elif hasattr(self.quant_config, "has_blocked_weights"):
return self.quant_config.has_blocked_weights()
return False
# Enable quant_fp8 CUDA ops (TODO disable in follow up)
# On H100 the CUDA kernel is faster than
# native implementation
# https://github.com/vllm-project/vllm/issues/25094
if has_blocked_weights():
custom_ops = self.compilation_config.custom_ops
if "-quant_fp8" not in custom_ops:
custom_ops.append("+quant_fp8")
def update_sizes_for_sequence_parallelism(self, possible_sizes: list) -> list:
# remove the sizes that not multiple of tp_size when
# enable sequence parallelism
removed_sizes = [
size
for size in possible_sizes
if size % self.parallel_config.tensor_parallel_size != 0
]
if removed_sizes:
logger.warning(
"Batch sizes %s are removed because they are not "
"multiple of tp_size %d when "
"sequence parallelism is enabled",
removed_sizes,
self.parallel_config.tensor_parallel_size,
)
return [
size
for size in possible_sizes
if size % self.parallel_config.tensor_parallel_size == 0
]
def _set_cudagraph_sizes(self):
"""
vLLM defines the default candidate list of batch sizes for CUDA graph
capture as:
```python
max_graph_size = min(max_num_seqs * 2, 512)
# 1, 2, 4, then multiples of 8 up to 256 and then multiples of 16
# up to max_graph_size
cuda_graph_sizes = [1, 2, 4] + list(range(8, 256, 8)) + list(
range(256, max_graph_size + 1, 16))
In the end, `vllm_config.compilation_config.cudagraph_capture_sizes`
will be the final sizes to capture cudagraph (in ascending order).
These sizes are used to capture and reuse CUDA graphs for
performance-critical paths (e.g., decoding). Capturing enables
significantly faster kernel dispatch by avoiding Python overhead. The
list is then filtered based on `max_num_batched_tokens` (e.g., 8192 on
most GPUs), which controls the total allowed number of tokens in a
batch. Since each sequence may have a variable number of tokens, the
maximum usable batch size will depend on actual sequence lengths.
Example:
With `max_num_batched_tokens = 8192`, and typical sequences
averaging ~32 tokens, most practical batch sizes fall below 256.
However, the system will still allow capture sizes up to 512 if
shape and memory permit.
Note:
If users explicitly specify cudagraph capture sizes in the
compilation config, those will override this default logic.
At runtime:
- If batch size <= one of the `cudagraph_capture_sizes`, the closest
padded CUDA graph will be used.
- If batch size > largest `cudagraph_capture_sizes`, cudagraph will
not be used.
"""
if (
self.model_config is not None
and not self.model_config.enforce_eager
and self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
):
# determine the initial max_cudagraph_capture_size
max_cudagraph_capture_size = (
self.compilation_config.max_cudagraph_capture_size
)
if max_cudagraph_capture_size is None:
max_cudagraph_capture_size = min(
self.scheduler_config.max_num_seqs * 2, 512
)
max_num_tokens = self.scheduler_config.max_num_batched_tokens
max_cudagraph_capture_size = min(max_num_tokens, max_cudagraph_capture_size)
assert max_cudagraph_capture_size >= 1, (
"Maximum cudagraph size should be greater than or equal to 1 "
"when using cuda graph."
)
# determine the cudagraph_capture_sizes
if self.compilation_config.cudagraph_capture_sizes is not None:
assert len(self.compilation_config.cudagraph_capture_sizes) > 0, (
"cudagraph_capture_sizes should contain at least one element "
"when using cuda graph."
)
# de-duplicate the sizes provided by the config
dedup_sizes = list(set(self.compilation_config.cudagraph_capture_sizes))
cudagraph_capture_sizes = dedup_sizes
# sort to make sure the sizes are in ascending order
cudagraph_capture_sizes.sort()
else:
cudagraph_capture_sizes = [
i for i in [1, 2, 4] if i <= max_cudagraph_capture_size
]
if max_cudagraph_capture_size >= 8:
# Step size 8 for small batch sizes, up to 256(not included)
cudagraph_capture_sizes += list(
range(8, min(max_cudagraph_capture_size + 1, 256), 8)
)
if max_cudagraph_capture_size >= 256:
# Step size 16 for larger batch sizes
cudagraph_capture_sizes += list(
range(256, max_cudagraph_capture_size + 1, 16)
)
if (
self.parallel_config.tensor_parallel_size > 1
and self.compilation_config.pass_config.enable_sequence_parallelism
):
cudagraph_capture_sizes = self.update_sizes_for_sequence_parallelism(
cudagraph_capture_sizes
)
# user-specific compilation_config.max_cudagraph_capture_size get
# truncated to valid_max_size when they are inconsistent.
valid_max_size = (
cudagraph_capture_sizes[-1] if cudagraph_capture_sizes else 0
)
if (
self.compilation_config.max_cudagraph_capture_size is not None
and self.compilation_config.max_cudagraph_capture_size != valid_max_size
):
# raise error only when both two flags are user-specified
# and they are inconsistent with each other
if self.compilation_config.cudagraph_capture_sizes is not None:
raise ValueError(
"customized max_cudagraph_capture_size"
f"(={self.compilation_config.max_cudagraph_capture_size}) "
"should be consistent with the max value of "
f"cudagraph_capture_sizes(={valid_max_size})"
)
logger.warning(
"Truncating max_cudagraph_capture_size to %d",
valid_max_size,
)
# always set the final max_cudagraph_capture_size
self.compilation_config.max_cudagraph_capture_size = valid_max_size
if self.compilation_config.cudagraph_capture_sizes is not None and len(
cudagraph_capture_sizes
) < len(self.compilation_config.cudagraph_capture_sizes):
# If users have specified capture sizes, we only need to
# compare the lens before and after modification since the modified
# list is only the subset of the original list.
logger.warning(
(
"cudagraph_capture_sizes specified in compilation_config"
" %s is overridden by config %s"
),
self.compilation_config.cudagraph_capture_sizes,
cudagraph_capture_sizes,
)
# always write back the final sizes
self.compilation_config.cudagraph_capture_sizes = cudagraph_capture_sizes
else:
# no cudagraph in use
self.compilation_config.max_cudagraph_capture_size = 0
self.compilation_config.cudagraph_capture_sizes = []
# complete the remaining process.
self.compilation_config.post_init_cudagraph_sizes()
def recalculate_max_model_len(self, max_model_len: int):
# Can only be called in try_verify_and_update_config
model_config = self.model_config
max_model_len = model_config.get_and_verify_max_len(max_model_len)
self.model_config.max_model_len = max_model_len
self.scheduler_config.max_model_len = max_model_len
def try_verify_and_update_config(self):
if self.model_config is None:
return
# Avoid running try_verify_and_update_config multiple times
if getattr(self.model_config, "config_updated", False):
return
self.model_config.config_updated = True
architecture = self.model_config.architecture
if architecture is None:
return
from vllm.model_executor.models.config import (
MODELS_CONFIG_MAP,
HybridAttentionMambaModelConfig,
)
cls = MODELS_CONFIG_MAP.get(architecture, None)
if cls is not None:
cls.verify_and_update_config(self)
if self.model_config.is_hybrid:
HybridAttentionMambaModelConfig.verify_and_update_config(self)
if self.model_config.convert_type == "classify":
# Maybe convert ForCausalLM into ForSequenceClassification model.
from vllm.model_executor.models.adapters import SequenceClassificationConfig
SequenceClassificationConfig.verify_and_update_config(self)
if hasattr(self.model_config, "model_weights") and is_runai_obj_uri(
self.model_config.model_weights
):
if self.load_config.load_format == "auto":
logger.info(
"Detected Run:ai model config. "
"Overriding `load_format` to 'runai_streamer'"
)
self.load_config.load_format = "runai_streamer"
elif self.load_config.load_format not in (
"runai_streamer",
"runai_streamer_sharded",
):
raise ValueError(
f"To load a model from S3, 'load_format' "
f"must be 'runai_streamer' or 'runai_streamer_sharded', "
f"but got '{self.load_config.load_format}'. "
f"Model: {self.model_config.model}"
)
def compile_debug_dump_path(self) -> Path | None:
"""Returns a rank-aware path for dumping
torch.compile debug information.
"""
if self.compilation_config.debug_dump_path is None:
return None
tp_rank = self.parallel_config.rank
dp_rank = self.parallel_config.data_parallel_rank
data_parallel_size = self.parallel_config.data_parallel_size
append_path = (
f"rank_{tp_rank}"
if data_parallel_size == 1
else f"rank_{tp_rank}_dp_{dp_rank}"
)
path = self.compilation_config.debug_dump_path / append_path
return path
def __str__(self):
return (
f"model={self.model_config.model!r}, "
f"speculative_config={self.speculative_config!r}, "
f"tokenizer={self.model_config.tokenizer!r}, "
f"skip_tokenizer_init={self.model_config.skip_tokenizer_init}, "
f"tokenizer_mode={self.model_config.tokenizer_mode}, "
f"revision={self.model_config.revision}, "
f"tokenizer_revision={self.model_config.tokenizer_revision}, "
f"trust_remote_code={self.model_config.trust_remote_code}, "
f"dtype={self.model_config.dtype}, "
f"max_seq_len={self.model_config.max_model_len}, "
f"download_dir={self.load_config.download_dir!r}, "
f"load_format={self.load_config.load_format}, "
f"tensor_parallel_size={self.parallel_config.tensor_parallel_size}, " # noqa
f"pipeline_parallel_size={self.parallel_config.pipeline_parallel_size}, " # noqa
f"data_parallel_size={self.parallel_config.data_parallel_size}, " # noqa
f"disable_custom_all_reduce={self.parallel_config.disable_custom_all_reduce}, " # noqa
f"quantization={self.model_config.quantization}, "
f"enforce_eager={self.model_config.enforce_eager}, "
f"kv_cache_dtype={self.cache_config.cache_dtype}, "
f"device_config={self.device_config.device}, "
f"structured_outputs_config={self.structured_outputs_config!r}, "
f"observability_config={self.observability_config!r}, "
f"seed={self.model_config.seed}, "
f"served_model_name={self.model_config.served_model_name}, "
f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, " # noqa
f"pooler_config={self.model_config.pooler_config!r}, "
f"compilation_config={self.compilation_config!r}"
)