Skip to content

vllm.reasoning.minimax_m2_reasoning_parser

logger module-attribute

logger = init_logger(__name__)

MiniMaxM2AppendThinkReasoningParser

Bases: ReasoningParser

Reasoning parser for MiniMax M2 model.

Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
@ReasoningParserManager.register_module("minimax_m2_append_think")
class MiniMaxM2AppendThinkReasoningParser(ReasoningParser):
    """
    Reasoning parser for MiniMax M2 model.
    """

    def __init__(self, tokenizer: AnyTokenizer, *args, **kwargs):
        super().__init__(tokenizer, *args, **kwargs)
        self.end_token_id = self.vocab.get("</think>")

    def is_reasoning_end(self, input_ids: list[int]) -> bool:
        end_token_id = self.end_token_id
        return any(input_id == end_token_id for input_id in reversed(input_ids))

    def extract_content_ids(self, input_ids: list[int]) -> list[int]:
        return input_ids

    def extract_reasoning_content_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
    ) -> DeltaMessage | None:
        if len(previous_token_ids) == 0:
            delta_text = "<think>" + delta_text
        return DeltaMessage(content=delta_text)

    def extract_reasoning_content(
        self, model_output: str, request: ChatCompletionRequest | ResponsesRequest
    ) -> tuple[str | None, str | None]:
        return None, "<think>" + model_output

end_token_id instance-attribute

end_token_id = get('</think>')

__init__

__init__(tokenizer: AnyTokenizer, *args, **kwargs)
Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
def __init__(self, tokenizer: AnyTokenizer, *args, **kwargs):
    super().__init__(tokenizer, *args, **kwargs)
    self.end_token_id = self.vocab.get("</think>")

extract_content_ids

extract_content_ids(input_ids: list[int]) -> list[int]
Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
    return input_ids

extract_reasoning_content

extract_reasoning_content(
    model_output: str,
    request: ChatCompletionRequest | ResponsesRequest,
) -> tuple[str | None, str | None]
Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
def extract_reasoning_content(
    self, model_output: str, request: ChatCompletionRequest | ResponsesRequest
) -> tuple[str | None, str | None]:
    return None, "<think>" + model_output

extract_reasoning_content_streaming

extract_reasoning_content_streaming(
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
) -> DeltaMessage | None
Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
def extract_reasoning_content_streaming(
    self,
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
) -> DeltaMessage | None:
    if len(previous_token_ids) == 0:
        delta_text = "<think>" + delta_text
    return DeltaMessage(content=delta_text)

is_reasoning_end

is_reasoning_end(input_ids: list[int]) -> bool
Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
def is_reasoning_end(self, input_ids: list[int]) -> bool:
    end_token_id = self.end_token_id
    return any(input_id == end_token_id for input_id in reversed(input_ids))

MiniMaxM2ReasoningParser

Bases: BaseThinkingReasoningParser

Reasoning parser for MiniMax M2 model.

Source code in vllm/reasoning/minimax_m2_reasoning_parser.py
@ReasoningParserManager.register_module("minimax_m2")
class MiniMaxM2ReasoningParser(BaseThinkingReasoningParser):
    """
    Reasoning parser for MiniMax M2 model.
    """

    @property
    def start_token(self) -> str:
        """The token that starts reasoning content."""
        return "<think>"

    @property
    def end_token(self) -> str:
        """The token that ends reasoning content."""
        return "</think>"

end_token property

end_token: str

The token that ends reasoning content.

start_token property

start_token: str

The token that starts reasoning content.